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Local density approach for modeling fluids with density-dependent interactions
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In a recent paper@Phys. Rev. Lett.86, 2038~2001!# a simple fluid with a particular density-dependent pair
potential was shown to exhibit, together with the vapor-liquid transition, a liquid-liquid phase separation and it
was evidenced that, in order to adequately define the correct boundaries of stability, a simulation procedure
based on the use of local densities had to be devised. It was found that for certain thermodynamic states the
potential drives the system toward a phase separation that is otherwise frustrated by the change in the inter-
actions induced by density fluctuations. Therefore, when integral equations or global density simulations are
used, the critical points estimated from the thermodynamics are not associated with divergent correlations and
vice versa. Here, we will explore in depth this fluid and introduce a detailed account of the proposed local
density simulation technique. The results presented bear general significance for density-dependent potentials,
like those of liquid metals or charge-stabilized colloids.

DOI: 10.1103/PhysRevE.67.021202 PACS number~s!: 61.20.Gy, 64.10.1h, 64.70.2p
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I. INTRODUCTION

Density-dependent~or more generally state dependen!
potentials play a key role in the theoretical modeling of co
plex fluids that would otherwise pose insurmountable di
culties given the typically large number of degrees of fre
dom involved @1#. Widely used treatments like th
McMillan-Mayer theory of electrolytes where the effects
the solvent are integrated out and condensed into a state
pendent dielectric constant fall into this class of simplific
tions, although perhaps one of the most representative c
corresponds to the effective ion-ion interaction in liquid m
als @2# treated in the nearly free electron model. Here,
effects of the valence electron cloud appear in the effec
ion-ion interaction mostly through the Fermi’s wave numb
kF ~a function of the electron density in turn!. And moving
from the atomic to the supramolecular level, we again
counter an example where state dependent potentials a
essential importance, namely, colloidal systems in which,
cording to the theory of Derjaguin-Landau-Verwe
Overbeek@3,4#, large charged colloidal particles immersed
electrolyte solutions experiment an effective screened C
lomb interaction. Here, the density of counterions~and hence
the density of colloidal particles via the electroneutral
condition! enters the effective interaction through the scre
ing constant and the effective valence. Density-depend
pair potentials have also been used to include implicitly
effects of three and higher-body interactions of real syste
@5,6#. Clearly, the study of phase transitions in these syste
is of primary importance. In this respect, recently it has be
questioned whether simple one-component fluids can exh
a liquid-liquid transition. A number of systems like water, S
SiO2, etc. ~mostly tetrahedrally coordinated substanc!
seem to exhibit a liquid-liquid critical point in the supe
cooled region@7#. For a simple fluid model with a tunabl
density-dependent potential, Tejero and Baus@8# have shown
that it is possible to generate a phase diagram within the
der Waals theory in which the liquid-liquid separation is w
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outside the metastable liquid-solid region. This poten
model has the following form:

V0~r ;r!5H ` ~r ,s!

2eS s

r D n(r)

~r>s!,
~1!

wheree defines the amplitude of the potential~i.e., the tem-
perature scale!, s is the hard sphere diameter,r is the inter-
particle distance, andr is the density. The potential inde
n(r) which determines the range of the interaction is giv
by

n~r!531
n~0!23

12
2

3
ar1

1

6
a2r2

. ~2!

As shown in Ref.@8# a wide variety of phase diagram
can be obtained by tuning the parametersa andn(0) in Eq.
~2!.

In a recent paper@9#, we have presented an integral equ
tion, perturbation theory, and Monte Carlo~MC! simulation
study for a slightly modified potentialV(r ;r). For practical
purposes,V0(r ;r) was truncated and shifted, which does n
qualitatively alter the features of the phase diagrams p
sented herein. The explicit form of the potential reads

V~r ;r!5H ` ~r ,s!

V0~r ;r!2V0~r c ;r! ~s<r<r c!

0 ~r .r c!,

~3!

wherer c is the cut-off distance andV0(r ;r) is given by Eq.
~1!. This truncated and shifted potential also exhibits liqu
liquid separation for certain combinations ofa and n(0).
This liquid-liquid separation stems basically from the dens
dependence of the potential, and in this respect, it is clos
connected to the phase separation found by Dijkstra and
©2003 The American Physical Society02-1
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Roij @10# for a purely repulsive density-dependent Yukaw
potential. There is, however, a substantial difference betw
these two systems. The purely repulsive system will exhib
transition stemming solely from the density dependence
the potential, for instance an isotherm computed in a can
cal simulation might exhibit a van der Waals loop with litt
or none particle number dependence, contrary to the stan
behavior in a phase separation process led by attrac
forces. In contrast, the system studied in Refs.@8,9#, due to
the presence of attractions, might exhibit a tendency to ph
separation which under certain circumstances is frustrate
the change of the interactions induced by the density fluc
tions. This explains the large differences between the inte
equation and the thermodynamic perturbation predictions
was thus made clear in Ref.@9# that the treatment of poten
tials which exhibit a density dependence poses consider
methodological and conceptual problems~see Ref.@11#!, and
that a coherent simulation approach must account for the
that the interactions change as a result of inhomogeneitie
the sample. In this work, we intend to present an in-de
study of the potential model proposed in Ref.@8#, both ana-
lyzing the difficulties encountered by the standard integ
equation approaches and with special emphasis on the s
lation procedure based on the use of local densities.

The rest of the paper is organized along the followi
lines. The following section is devoted to a brief presentat
of the thermodynamics of density-dependent potentials
Sec. III, we have collected the essentials of the thermo
namic perturbation treatment and the integral equation
proach. In Sec. IV, we present some general remarks o
standard global density-dependent MC simulation. A full a
count of the simulation approach here proposed is prese
in Sec. V. Finally, in Sec. VI the most significant results a
collected and commented upon.

II. THERMODYNAMICS AND PHASE SEPARATION IN
SIMULATIONS WITH DENSITY-DEPENDENT

POTENTIALS

Let us first consider a system described by the poten
model, Eqs.~1! and ~2!, with a fixed potential indexn0
[n(r0). If the corresponding Helmholtz free energy is d
noted by F05F0(b,V,Nun0), where b51/kBT, with kB
Boltzmann’s constant andT the absolute temperature,N is
the number of particles,V is the volume, and the implici
dependence onn0 has also been expressed, we have

d~bF0!5U0db2bp0dV1bm0dN, ~4!

whereU0 is the internal energy,p0 stands for the pressure
andm0 is the chemical potential.

Focusing now on a system described by the poten
model, Eqs.~1! and~2! in which the potential indexn(r) is
a function of the density, the differential form of the corr
sponding Helmholtz free energyF5F„b,V,Nun(r)… is

d~bF !5Udb2bpdV1bmdN, ~5!

whereU, p, andm denote the internal energy, the pressu
and the chemical potential, respectively.
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Note that althoughF„b,V,Nun(r0)…5F0(b,V,Nun0), the
free-energy derivatives for this thermodynamic state do n
in general, coincide. Indeed, the implicit dependence onN
andV through the potential indexn(r) leads to

p52S ]F

]VD
b,N,n(r)

2S ]F

]n~r! D
b,V,N

S ]n~r!

]V D
N

~6!

and

m5S ]F

]ND
b,V,n(r)

1S ]F

]n~r! D
b,V,N

S ]n~r!

]N D
V

. ~7!

In the thermodynamic limit, the pressures (p andp0) and the
chemical potentials (m and m0) are functions ofb and r,
and Eqs.~6! and ~7! reduce to

p„b,run~r!…5p0~b,run0!1 l „b,run~r!…r2n8~r! ~r5r0!

~8!

and

m„b,run~r!…

5m0~b,run0!1 l „b,run~r!…rn8~r! ~r5r0!, ~9!

where n8(r) denotes the derivative of the potential inde
with respect to the density andl „b,run(r)… is the thermody-
namic limit of

l „b,V,Nun~r!…[
1

N S ]F

]n~r! D
b,V,N

.

Let us assume that we perform a simulation in the cano
cal NVT ensemble and that at the thermodynamic st
(b,r0), we have

S ]p„b,run~r!…

]r D
r5r0

<0, S ]p0~b,run0!

]r D
r5r0

.0,

In such a case, the first condition implies that this thermo
namic state is within a van der Waals loop in thep-r plane
but, due to the second condition, at this state there will be
signature of segregation. For instance, the loop will sh
little dependence on the number of particles, the size dep
dence of the fluid-fluid equilibrium binodal close to the cri
cal point will be negligible, and the critical exponents w
not be affected by long range fluctuations. In this situati
one can perform the simulation without major problems a
in the NpT or grand canonical ensembles@12#.

On the other hand, it is possible to find that at the th
modynamic state (b,r0)

S ]p„b,run~r!…

]r D
r5r0

.0, S ]p0~b,run0!

]r D
r5r0

<0,

i.e., the system should be homogeneous according to
thermodynamic stability criteria, but in practice the sim
lated system is not. If such is the case, a system simulate
2-2
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LOCAL DENSITY APPROACH FOR MODELING FLUIDS . . . PHYSICAL REVIEW E 67, 021202 ~2003!
a NVT ensemble will show some tendency to separate
different phases, which reflects in the strong system size
pendence of thep0 values.

The source of this contradiction lies in a flaw of the sta
dard simulation procedure when dealing with densi
dependent potentials. In order to determine the interacti
in practice, one uses a potential indexn(r) that is deter-
mined by the average value of the densityr ~hereafter, re-
ferred to as the ‘‘global’’ density! in the whole system, irre-
spective of the presence of inhomogeneities. Thus, if
system separates into two phases ofNI particles in a volume
VI and NII particles in a volumeVII , with r I5NI /VI and
r II5NII /VII , the standard approach implies that the inter
tions in each phase are identical and controlled by a pote
index n(r). However, if each phase is considered as a se
rate subsystem we will have two different potential indic
nI5n(r I) andnII5n(r II) and hence, if we divide the system
into two parts it is straightforward to conclude that the Hel
holtz free energy will no longer properly behave as an ext
sive variable. Indeed, the free energyFNVT„b,V,Nun(r)…
that controls the evolution of the global system is

FNVT„b,N,Vun~r!…5F0„b,NI ,VI un~r!…

1F0„b,NII ,VII un~r!…, ~10!

whereas the proper free energy associated with the phy
situation under scrutiny should be

F„b,N,Vun~r!…5F0„b,NI ,VIunI…1F0„b,NII ,VIIunII….
~11!

In NpT simulations of one-component systems with dens
independent pair potentials, the simultaneous presenc
two phases in the simulation box is hindered by the surf
tension. For a large system with density-dependent inte
tions, we can find phase coexistence at the transition pres
if the free-energy penalty due to the presence of interface
compensated. It will then be possible again to encounter s
ations where the Gibbs free energy is no longer an exten
property. This would be the case when the density dep
dence of the potential indexn(r) leads to less attractive
interactions as density increases. If the system separat
two phases inside the simulation box, the phase with hig
density will have a lower Gibbs free energy than a cor
sponding homogeneous high density phase, if the inte
tions are evaluated using the global average density. T
reduction of Gibbs free energy can compensate the incr
of free energy of the low density~where the pair potentia
will be less attractive than the one corresponding to a ho
geneous phase of the same density! and the interfacial free
energy due to the presence of two phases at equilibrium

Similar problems will appear in the grand canonical e
semble, where in principle only one phase is expected
appear in the simulation box in the thermodynamic lim
This is because the excess of free energy due to the fo
tion of interfaces can be overcompensated by the use
potential index,n(r) equal in both phases.

Use of the Gibbs ensemble@13# is also not free of prob-
lems. For large systems, we can find a situation similar to
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one described for the canonical case. The phase separ
can occur in such a way that both boxes contain the
phases and similar global densities, instead of having
phase in each box.

III. ESSENTIALS OF THE INTEGRAL EQUATION AND
THERMODYNAMIC PERTURBATION APPROACHES

In this section, we present a brief account of two comm
theoretical approaches to describe the thermodynamics
fluid with the potential model~3!, namely, Ornstein-Zernike
type integral equations and high temperature thermodyna
perturbation theory~TPT!.

Different integral equation theories of the radial distrib
tion function g(r ;r) are defined in terms of the so-calle
bridge functionb(r ;r), which involves high order particle
correlations so that an approximation forg(r ;r) can be ob-
tained. We will focus our attention on two approximatio
schemes, the hypernetted chain~HNC! and the reference
HNC ~RHNC!. As it is well known, these approximatio
schemes consist of the Ornstein-Zernike relation

h~r ;r!5c~r ;r!1rE c~ ur2r 8u;r!h~r 8;r!dr , ~12!

whereh(r ;r)5g(r ;r)21, with c(r ;r) being the direct cor-
relation function, together with a closure of the form

g~r ;r!5exp@2bV~r ;r!1h~r ;r!2c~r ;r!1b~r ;r!#,
~13!

whereV(r ;r) is the interparticle potential. The bridge func
tion b(r ;r) can simply be neglected, leading to the HN
closure, or approximated by the bridge function of a ha
sphere~HS! fluid yielding the RHNC closure. In the spirit o
Lado, Foiles, and Ashcroft optimized approach@14#, we have
also set the hard sphere diameter so as to minimize the
energy. It is well known that the HNC thermodynamics
fully self-consistent, aside from the isothermal compressi
ity calculated from the fluctuation theorem, which cannot
derived from the HNC functional@15#. Hence, the pressur
calculated via the virial equation is consistent with that o
tained from the density derivative of the free energy and w
the one derived from the energy route. These consiste
properties hold approximately in the RHNC, but additional
in the case of density-independent potentials the discrep
cies between the virial and the compressibility equations
minimized. For density-dependent potentials, however,
latter consistency property is ruled out. This is due to the f
that the usual form of the compressibility equation,

11rE h~r ;r! dr5rkBTkT , ~14!

where kT is the isothermal compressibility coefficient, n
longer holds@16,17#. As a consequence, the thermodynam
critical points are not associated with diverging correlatio
and, therefore, a no solution curve of an integral equatio
not necessarily the signature of a phase transition any m
and vice versa. Thus, for the potential model~3!, the pressure
2-3
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exhibits a well defined van der Waals loop, a feature tha
typically absent for HNC-like approximations for state ind
pendent potentials, i.e., in these cases, both~HNC and
RHNC! equations break down before the pressure or
chemical potential can develop a van der Waals loop. Mo
over, we observe in Fig. 1, the high degree of consiste
between the free-energy functional@15# and the free energy
obtained from thermodynamic integration of the virial pre
sure. On the other hand, when comparing with MC resu
the RHNC as expected is somewhat superior to the H
approximation. Consequently, in what follows, we will ju
concentrate on the RHNC results.

Satisfactory estimates of the thermodynamic quanti
can also be obtained in the context of TPT. As usual, we s
the pair potential as

V~r ;rul!5VHS~r !1lVA~r ;r!, ~15!

using the HS fluid as the reference system and the attrac
~density-dependent! potential as the perturbation. The param
eterl (0<l<1) stands for the coupling term which grad
ally ‘‘switches on’’ the perturbation.

FIG. 1. Reduced excess free energyb f ex versus the reduced
density, as obtained from the HNC~solid line! and RHNC~solid
line with circles! functionals, and from thermodynamic integratio
of the virial pressure for the HNC~dotted line! and RHNC~dashed
line! for a512vHS , n(0)53.5, r c55.1s, andt5kBT/e53.
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The excess free energy per particle can be written as

f ex5 f ex
HS1

1

NE0

1

^HN
A&ldl, ~16!

where^HN
A&l is the canonical ensemble average of the to

perturbation energy, andf ex
HS is the excess free energy pe

particle of the HS fluid.
Using a high temperature expansion truncated at first

der @18#, it can be shown thatf ex can be approximated by

f ex5 f ex
HS1

1

2
rE gHS~r ;r!VA~r ;r!dr , ~17!

wheregHS(r ;r) is the radial distribution function of the HS
reference system.

Comparing the first-order TPT results with the RHNC e
timates~see Table I!, we conclude that we can confident
rely on the TPT predictions to qualitatively describe t
phase behavior of the potential model~3!. The TPT is not
plagued with the convergence difficulties present in
RHNC, which to make matters worse in the present insta
are not correlated with the phase transition.

Finally, in order to obtain the coexistence curves, one s
ply has to solve the two-phase coexistence conditions

p~r I ,T!5p~r II ,T! ~18!

and

m~r I ,T!5m~r II ,T!, ~19!

where the pressurep and the chemical potentialm can be
derived from the free energy per particlef 5kBT@ ln(rL3)
21#1fex, with L the thermal de Broglie wavelength, usin
the thermodynamic relations

p5r2] f /]r, m5]~r f !/]r. ~20!

IV. THE SIMULATION PROCEDURE USING GLOBAL
DENSITIES

As pointed out, we first consider global densities on t
MC simulations for the potential model~3!. In systems with
a small number of particles and large density, it may hap
TABLE I. Reduced excess free energy per particleb f ex, internal energy per particlebu, and pressure
p* 5bps3 from first-order TPT and RHNC for reduced temperaturet5kBT/e53.0 at different reduced
densitiesr* 5rs3.

r* b f TPT
ex b f RHNC

ex buTPT buRHNC (p* )TPT (p* )RHNC

0.1 0.032 0.026 20.192 20.204 0.108 0.108
0.2 0.160 0.153 20.321 20.337 0.269 0.270
0.3 0.348 0.340 20.433 20.448 0.462 0.463
0.4 0.484 0.476 20.647 20.661 0.535 0.529
0.5 0.528 0.519 21.02 21.03 0.552 0.527
0.6 0.565 0.553 21.48 21.49 0.847 0.789
0.7 0.692 0.675 21.97 21.98 1.66 1.56
0.8 0.975 0.948 22.45 22.45 3.23 3.08
2-4
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that L,2r c , whereL is the length of the side of the simu
lation box. In these cases we have explicitly calculated
pair interactions forr ,L/2, and a mean-field correction@19#
has been added to the energy to take into account the i
actions in the range@L/2,r c#. The chemical potential can b
evaluated using the insertion method@19#.

bm. ln~rL3!2 ln^e2bDU&NVT , ~21!

whereDU accounts for the change of energy of the syst
when introducing a test particle at a random position in
system. The density dependence of the potential indexn(r)
has to be taken into consideration, so thatDU has two con-
tributions: the change due to the new value of the poten
index for the system withN11 particles due to the increas
of the density, and the change due to the interactions of
test particle with the remainingN particles in the system.

For a fixed temperature, we can write

bm~r!5bm01 lnz, ~22!

where z is the fugacity of the fluid andm0 is a reference
chemical potential~which only depends on the temperature!.
The usual choice forbm0 is

bm05 ln~L3/s3!. ~23!

The knowledge ofz for different values ofr defines the
equation of state of the system. Expanding lnz as a series in
the density

lnz5 ln~rs3!1 (
k51

ak~rs3!k, ~24!

where the coefficientsak are estimated by fitting the simula
tion data. Using elementary thermodynamics one can exp
the coefficients of the virial expansion of the pressure
terms ofak , leading to

bps35rs31 (
k51

k

k11
ak~rs3!k11. ~25!

The determination of the phase equilibrium~18! and ~19! is
straightforward using Eqs.~24! and ~25!.

V. THE SIMULATION PROCEDURE WITH LOCAL
DENSITY CONSIDERATIONS

It was shown in Sec. II that in certain cases the use o
global density in the definition of the pair potential leads
thermodynamic inconsistencies. In this section we will sh
how to circumvent this problem introducing a local dens
approach.

A. Definition of the local density

Consider a HS fluid with global densityr. A local density
rL can be defined by
02120
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rL5r
E gHS~r ;r!w~r !dr

E w~r !dr
5r1r

E hHS~r ;r!w~r !dr

E w~r !dr
,

~26!

wherehHS(r ;r)5gHS(r ;r)21 is the total correlation func-
tion of the HS fluid,w(r ) is a weight function of the form

w~r !5F12S r /s21

l21 D qG2

~s<r<ls!, ~27!

and zero otherwise, andq is a positive integer, andl.1. For
certain values ofq andl, w(r ).1 for short distances, and
decays rapidly to zero atr 5sl. gHS(r ;r) deviates signifi-
cantly from unity precisely within this short range. Ther
fore, assuming that most of the contributions to the integ
stem from the short range region~where w.1), we can
make the following approximation:

rE hHS~r ;r!w~r !dr.rE hHS~r ;r!dr5rkBTkT
HS21,

~28!

wherekT
HS is the isothermal compressibility coefficient of th

HS fluid. Therefore, the local density can be estimated a

rL5r1
rkBTkT

HS21

E w~r !dr
. ~29!

The accuracy of Eq.~29! can be assessed evaluating the lo
densityrL by computer simulation for a HS fluid and com
paring the results with those estimated using Eq.~29! and the
Carnahan-Starling~CS! equation of state@18#. The param-
etersq and l in Eq. ~27! are tuned, so that the value o
(rL /r)sim and (rL /r)CS are reasonably close. This led us
chooseq56 andl54 ~see Table II!.

In computer simulation the local density around a parti
i for a given configuration of the system can be evalua
from

TABLE II. Local densities from simulation and theory. See t
text for details.

q l prs3/6 (rL /r)sim (rL /r)CS

4 3.0 0.475 1.050 1.053
6 3.0 0.475 1.047 1.044
4 3.5 0.475 1.035 1.034
4 4.0 0.475 1.024 1.023
6 4.0 0.475 1.019 1.019
6 3.0 0.300 1.039 1.037
4 3.5 0.300 1.028 1.029
6 4.0 0.300 1.016 1.016
2-5
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rL,i5

(
j Þ i

w~r i j !

E w~r !dr
, ~30!

wherer i j is the distance between particlesi andj. Our goal is
to design a simulation procedure for pair potentials that
pend explicitly on the local densities. For homogeneous s
tems the method must render results essentially equivale
those obtained for potentials which depend on the glo
density. The local densities evaluated through Eq.~29! are
expected to be larger than the global density of a correspo
ing homogeneous system@due to the structure ofg(r ;r) at
short distances#. Therefore, we should either increase t
value ofl to reduce such differences or to construct a dev
that relates a local density around a given particle,rL,i with
an equivalentglobal densityr i . The second alternative ha
been chosen because of its lower computational cost.
accurate prescription forr i given the value ofrL,i can be
formulated using the scheme developed above. The di
ences betweenrL andr for homogeneous systems are mo
significant at high densities. Moreover, the density dep
dence ofrL must be monotonic in order to evaluater i as a
function of rL,i . Such a condition is fulfilled using the C
equation of state. The determination ofr i in terms ofrL,i can
be carried out by an iterative procedure. Thekth iteration
estimate reads

r i
(k)5rL,i

r i
(k21)

rL~r i
(k21)!

. ~31!

As initial solution one can user i
(0)5rL,i .

B. The potential energy in the local density model

Since the local density varies from particle to particle, tw
particlesi and j have, in general, different potential indice
associated with their respective local densities. The pair
teraction can then be defined as the average of the ene
calculated with both potential indices,n(r i) and n(r j ).
Nonetheless, such a computational scheme is clearly imp
tical. If a particlei changes its position in a trial move, th
particles around it will undergo a change in their poten
index and many pair interactions should be recalculated
evaluate the acceptance criteria. In order to develop a m
efficient alternative each potential indexni has been treated
as an ‘‘internal’’ coordinate of the particlei. These coordi-
nates are relatively free to change from their ‘‘central v
ues’’ n(r i). The condition of similarity between local an
global density results~correspondence principle! for homo-
geneous systems implies that the differencesni2n(r i) must
remain small. This can be enforced introducing a new ene
term in the Hamiltonian. The potential energyU can then be
written as

U5UHS1Uinter1Uintra , ~32!

whereUHS corresponds to the hard sphere interactions
the intermolecular contributionUinter stands for the sum o
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pair interactions, similar to those present in the global d
sity simulations but taking into account the particular valu
of the potential indicesni for the pair of particles involved

Uinter5
1

2 (
i

(
j Þ i

V~r i j ;ni ! ~r i j >s!. ~33!

The ‘‘intramolecular’’ contributionUintra is chosen to be

bUintra~ni !5
K

2 (
i 51

N

@ni2n~r i !#
2. ~34!

In this contribution, we include the many body interactio
underlying the local density approach through the dep
dence ofr i on the positions of the other particles. The val
of K must be large enough to avoid large fluctuations ofni
aroundn(r i), while keeping an adequate acceptance rate
the MC simulation.

C. Simulation algorithm

Two kind of trial moves are performed in the simulatio
procedure: translations of a particlei and changes of its in-
ternal coordinate. The first type of move is performed
standard procedures@19#. In order to apply the acceptanc
criteria, first the possibility of hard sphere overlaps
checked by a link-list procedure@19#. If the trial configura-
tion is not forbidden by hard core overlaps, the change in
potential energy has to be evaluated. The calculation
DUinter must incorporate two contributions with differen
potential indices for each pair interaction. The change
Uintra is due to the variation of the local densities of th
displaced particle and of the remaining particles in the s
tem. The change in local densities is straightforward sin
the distancesr i j are explicitly computed to calculat
DUinter . For j Þ i ,

rL, j
new5rL, j1

@w~r i j
new!2w~r i j !#

E w~r !dr
. ~35!

Once one has determined the new values of the local de
ties it is possible to calculate the corresponding equiva
global densityr j

new to finally computeD(bUintra). The ac-
ceptance criterion used for these moves is the standard
due to Metropolis@19#.

In the second type of MC steps~sampling one interna
coordinate,ni) local densities do not change. The probabil
of a potential indexni ~keeping constant the remaining co
ordinates of the system! is

P~ni !}exp@2bW~ni !#, ~36!

where

bW~ni !5
K

2
@ni2n~r i !#

21
b

2 (
j Þ i

V~r i j ;ni ! ~r i j >s!.

~37!
2-6
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A function W0 is defined from the Taylor expansion o
W(ni) aroundn(r i) truncated to second order onni . The
result can be expressed as

bW0~ni !5a01
K0

2
~ni2nmin!

2, ~38!

wherenmin is the value of the index that minimizesbW0.
Within the above conditions~large value ofK), we have
K0.K andnmin.n(r i). The trial value ofni , nnew is cho-
sen with probabilityP0

P0~nnew!}exp@2bW0~nnew!#. ~39!

Detailed balance is fulfilled@19# when the acceptance prob
ability A of a change fromni5nold to ni5nnew is given by

A~nnewunold!5maxF1,
P~nnew!

P~nold!

P0~nold!

P0~nnew!
G . ~40!

For K5104, nearly 100% of the moves were accepted.

D. Estimation of the chemical potential

In order to evaluate the chemical potential, a range
acceptable values of the potential index has been defi
namely,

nP@nmin ,nmax#, nmin.3. ~41!

In principle, we can estimate the chemical potential by
method similar to the one used for global density simu
tions. Now one should also pick a value for the poten
index of the test particle. A uniform sampling over its de
nition range is likely to give poor statistics on the estimati
of m. This can be bypassed using procedures similar to th
we have used in sampling internal coordinates. However,
found that such a strategy alone does not lead to a re
efficient method. In the determination of the chemical pot
tial of systems with a hard core we can consider two sour
of uncertainty. First, it is required to have a sufficient numb
of successful insertions~i.e., without hard core overlaps! and
second the fluctuation of the quantity to be averaged o
successful insertions must not be very large. Special pro
dures are available@19# to cope with the first problem. In ou
case, given the low computational cost of checking h
sphere overlaps and that the densities of the systems ar
too high in most of the cases, a direct insertion method
adequate. In order to solve the second problem, we anal
the sources of large fluctuations in the insertion energyDU
in successful insertions. Aside from the intramolecular
ergy of the test particle, the main source of fluctuation w
found to be the changes on intramolecular energies of
ticles whose local densities are affected by the insertion
avoid these effects, we employ a procedure in which, in
trial insertion, we keep constant the differencesj i5ni
2n(r i). This scheme implies a simple change on the cho
of internal coordinates. The chemical potentialm can be
evaluated as
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Dn

rL3Ln

^e2bDU&, ~42!

where Dn[nmax2nmin and Ln takes into account the ki
netic energy contribution of the internal coordinates to
partition function. LetX0 be the fraction of successful inse
tions, then

^e2bDU&5X0Xs , ~43!

whereXs is the average of exp@2bDU# over the successfu
insertions. LetNs be the total number of successful inse
tions, thenXs can be computed from

Xs5
1

NsDn (
k51

Ns E
nmin

nmax
dn exp@2bDU~r k ,n!#, ~44!

wherer k denotes the position of the test particle in the su
cessful insertion trialk. An uniform sampling onn is ex-
pected to be inefficient. To cope with this, we replacen with
a new variablea,

a5erfFAKa

2
~n2na!G , ~45!

where erf is the error function, and the parametersKa andna
will be specified later. The change of variable leads to

Xs5
1

NsDn (
k51

Ns A p

2Ka
E

amin

amax
exp@2bDUins~r k ,n!#da,

~46!

where

bDUins~r ,n!5bDU~r ,n!2
Ka

2
~n2na!2. ~47!

Now, it is possible to obtain an uniformly distributed sam
pling on the new variablea. For appropriate values ofKa
@i.e., Ka.K and na.n(r)], we will have amin.21 and
a1.1. Therefore,

Xs5
1

NsDn (
k51

Ns A2p

Ka
^exp@2bDUins~r k ,nk!#&a .

~48!

When performing the insertion test using$j i% as internal
coordinates, the intramolecular energy of theN particles of
the system does not change. In order to evaluateDU(r ,n)
for a successful insertion, we have to compute:~i! the
changes of the intermolecular interactions between theN par-
ticles of the systemDUinter,N ~since the values ofni will
change for each particle whoser i is affected by the inser-
tion!, ~ii ! the intramolecular energy of the inserted partic
and~iii ! the intermolecular interactions between the inser
particle and the particles of the system. The actual change
n(r i) are small from the point of view of the intermolecula
interactions and a full recalculation of all the pair intera
2-7
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tions is not required. For a given successful insertion,
change in the potential indexdni is given by

dni5n~r i ,test!2n~r i !, ~49!

where r i ,test corresponds to the equivalent bulk density
particle i in the system withN11 particles. The change o
the intermolecular interactions between theN particles con-
trolled by the potential indexni , dui will be to a very good
approximation

dui5ui8dni1
ui9

2
~dni !

2, ~50!

with

ui5
1

2 (
j Þ i

V~r i j ,ni ! ~r i j >s!, ~51!

DUinter,N5(
i 51

N Fui8dni1
ui9

2
~dni !

2G , ~52!

whereui8 andui9 are the first and second derivative ofui with
respect toni in the N-particle system. The derivatives a
computed for each particle before performing a number
insertion attempts.

The evaluation ofDUintra,N11 is straightforward after
evaluating the local density around the test particle.

The algorithm to perform the insertion test can
sketched according to the following steps:~i! Evaluate the
local density around the test particle and determine
equivalent bulk densityrN11. ~ii ! Compute the changes o
the local densities of theN particles of the system due to th
insertion of the test particle and the valuesr i ,test. ~iii ! Com-
pute the changes in the intermolecular energy terms ascr
to the particles of the system,DUinter,N , and the interactions
of these particles with the test particle in terms of the n
potential indicesni of the N-particle system.~iv! Evaluate
the intermolecular interaction of the test particle~and first
and second derivatives with respect tonN11) at nN11
5n(rN11). ~v! DetermineKa and na as in internal moves
and use them to pick a value ofnN11. ~vi! Compute the
intramolecular energy of the test particle and the interm
lecular interactions that depend onnN11 to finally calculate
bDUins . According to this scheme and the condition
equivalence to systems with global density interactions in
homogeneous limit, the configurational part of the chemi
potential can be computed as

rs3e2b(m2m0)5KA K

Ka
exp@2bDUins#L

a

. ~53!

VI. RESULTS AND DISCUSSION

Figure 2 shows the theoretical predictions for the ph
diagram obtained for the full potential@Eqs. ~1 and 2!# for
a512.0vHS ~where vHS5ps3/6) and n(0)53.5. The re-
sults obtained from TPT are in agreement with the RHN
predictions. Thus, we have relied on the TPT to search in
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parameter space„a,n(0)… in our quest for the liquid-liquid
equilibrium. The good performance of the TPT is not surpr
ing since the values of the potential indexn(r) for the cases
considered correspond to a relatively slow decay of the
tractions between particles. In Figs. 3 and 4 the TPT ph
diagram is shown for different values ofa andn(0).

Finally, for a55.7vHS , n(0)53.2, andr c55.1s ~other
parameter combinations giving analogous qualitative
sults!, it is seen in Fig. 5 that at low temperatures, the is
therms develop two van der Waals loops. The correspond
phase diagram, shown in Fig. 6, therefore, exhibits a vap
liquid transition and a liquid-liquid transition. Comparin
these TPT estimates with the RHNC predictions, we find t
even though the RHNC liquid-liquid equilibrium agrees wi
TPT, a pseudospinodal line with a single maximum cov
the low-density region and prevents the determination of
vapor-liquid equilibrium. This situation is quite opposite

FIG. 2. Phase equilibrium in the density-temperature plane
the same parameters as in Fig. 1. The solid circles correspon
RHNC calculations and the solid lines are the results of first-or
TPT. The no solution region of the RHNC equation is delimited
a dot-dashed line.

FIG. 3. Phase equilibrium in the density-temperature plane
n(0)53.2, r c55.1s, and a513vHS ~solid line!, 10vHS ~solid
line with squares!, and 8vHS ~solid line with triangles!.
2-8
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what was found in Fig. 2, where the divergence of corre
tions occurs well outside the binodal~an extreme case woul
be that of Ref.@10#, where there is no divergence of corr
lations!.

In order to get a rough estimate of the metastability lim
~i.e., the binodal line for a global density simulation proc
dure! for fluids simulated in theNVT ensemble, we have
performed a series of simulations for different temperatu
and densities with fixed potential indices andr c55.1s.
From the chemical potentials calculated using simulati
with N5256 the liquid-vapor equilibrium~LVE! can be de-
termined. The values of the inverse reduced temperaturet
5e/(kBT) and the potential index considered lie in th
ranges@0.7,1.0# and @3.2,3.6#, respectively. The results o
the LVE for fluids with density-independent interactions c
be fitted to the following equations:

FIG. 4. Phase equilibrium in the density-temperature plane
a512vHS , r c55.1s, and n(0)53.4 ~solid line!, 3.2 ~solid line
with squares!, and 3.0~solid line with triangles!.

FIG. 5. Isotherms in the density-pressure (p* 5bps3) plane
obtained from first-order TPT fora55.7vHS , n(0)53.2, andr c

55.1s and reduced temperatures~from bottom to top! t50.9
21.2 by steps of 0.05. It is seen that at low temperatures the
therms exhibit two van der Waals loops.
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, ~55!

wherer l andrv are the densities at coexistence of the liqu
and the vapor phases, and the exponentb8 has been consid
ered as an adjustable parameter. A weighted least squar
of the data yields:b050.420 764, bt50.329 877, bn5
20.104 065, b850.3842, a050.872 437, at51.728 806,
andan520.618 653.

The metastability limits for a fluid with the density
dependent pair potential~3! for a55.7vHS , n(0)53.2, and
r c55.1s, were obtained as a function of the density
searching for the value ofT, where eitherr5rv„T,n(r)… or
r5r l„T,n(r)…. The results are shown in Fig. 7~dotted line!.
It is remarkable the agreement between the binodal lines
timated using global density MC results and the pseudos
odal lines arising from RHNC calculations. Comparing Fig
6 and 7 it seems that the fluid’s stability below the no so
tion line of the RHNC and above the vapor-liquid critic
point stems from the density dependence of the interactio
Simulations using the local density procedure were carr
out in theNVTensemble for the same set of parameters. T
number of particles were chosen to beN5500 in most of the
cases. Some simulations were run usingN5864 and N
51372 in order to analyze the size effects.

For a given temperature, we usually performed 24 run
packing fractions h5rps3/6 given by h50.02i ( i
51,2, . . . ,24).Initial configurations were taken either from
a lattice structure or from the last configuration of a run
higher density. Simulations were organized in cycles, e
cycle implying N translational attempts andN internal
moves. For each case, we ran 43104 cycles and average
were taken over the second half of the runs. After complet

r

o-

FIG. 6. Phase equilibrium from first-order TPT~solid lines! and
RHNC ~solid circles! for a55.7vHS , n(0)53.2, andr c55.1s.
The no solution region of the RHNC equation is delimited by
dotted line.
2-9
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each cycle, we performed typically 103 insertion attempts to
evaluate the chemical potential. At a given temperature,
chemical potential estimates were fitted as a function of
density using Eq.~24!. From the coefficientsak the pressure
and the phase equilibrium were determined.

In Table III the coexisting densities and the pressure
coexistence for the vapor-liquid and the liquid-liquid equili
ria are gathered, whereas in Table IV the vapor-high den
liquid equilibrium data are reported. The system size dep
dence of the results is only significant~within error bars!
close to the critical points. In Fig. 7 the phase diagram
tained from simulation results and TPT is shown. The go

FIG. 7. Phase equilibria obtained from the local density simu
tion technique~solid circles! for a55.7vHS , n(0)53.2, andr c

55.1s, compared with first-order TPT~solid curves!. The region
where we ought to use the local density criteria in the simulat
technique is also indicated~dotted line!.
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agreement between theory and simulation, specially in
liquid-liquid equilibrium is due to the relatively slow deca
of the pair potential.

In the simulation method proposed here, we have
cluded a new length scale in the system, basically contro
by the parameterl. In order to get a precise analysis of th
fluid phase equilibria, especially close to the critical poin
without significant effects on the particular choice of the
cal density parameters, it would be required thats!ls
!L. In situations where the fluid-fluid equilibrium is pro
duced by the density dependence of the pair potential,
local density approach could be expected to induce a cr
over ~basically controlled by the lengthls) from a mean-
field critical behavior~where no local density consideration
are taken into account,l→`) to an Ising-like behavior pro-
vided that the interactions are short ranged@20#.

Finally, the strategy followed in the simulation of a flui
with local density dependence of the potential~i.e., the intro-
duction of ‘‘fictitious’’ internal degrees of freedom! could be

-

n

TABLE IV. Simulation results for the reduced coexisting den
ties, pressure and fugacityz of the vapor (v) –high density liquid
(hl) equilibrium for the same parameters and inverse reduced t
peratures as defined in Table III.

t21 N rv* rhl* pv2hl* lnz

0.94 500 0.090~4! 0.823~19! 0.0489~5! -3.348~11!

0.94 864 0.089~3! 0.822~16! 0.0486~4! -3.351~5!

0.95 500 0.070~2! 0.851~22! 0.0439~5! -3.419~7!

0.96 500 0.058~2! 0.868~17! 0.0394~7! -3.495~17!

0.97 500 0.0498~9! 0.868~13! 0.0358~4! -3.568~8!

0.98 500 0.0443~8! 0.873~12! 0.0330~4! -3.632~9!
cal

bindices
timation
TABLE III. Reduced densitiesr* 5rs3 and pressurep* 5bps3 at coexistence obtained from Monte Carlo simulation using the lo
density method, forn(0)53.2, a55.7vHS , r c55.1s, l54, andq56, at different reduced inverse temperaturest215e/kBT and number
of particlesN. Columns 3 to 5 correspond to the vapor-liquid coexistence, and columns 6 to 8 to the liquid-liquid coexistence. The su
v, l l , andhl refer to the vapor, the low density liquid, and the high density liquid, respectively. In the parentheses, we report the es
of error bars as twice the standard deviation of the mean, in units of the last figure of the corresponding magnitude.

t21 N rv* r l l* pv2 l l* r l l* rhl* pll 2hl*

0.87 500 0.150~10! 0.259~16! 0.0620~3!

0.88 500 0.124~3! 0.294~6! 0.0591~2! 0.618~25! 0.729~27! 0.286~7!

0.88 864 0.129~5! 0.282~9! 0.0593~3! 0.638~41! 0.704~46! 0.290~6!

0.89 500 0.110~2! 0.312~6! 0.0564~3! 0.599~14! 0.753~16! 0.257~6!

0.89 864 0.113~2! 0.315~5! 0.0566~2! 0.598~14! 0.745~19! 0.255~5!

0.90 500 0.101~2! 0.332~6! 0.0541~2! 0.570~12! 0.764~19! 0.219~5!

0.90 864 0.104~2! 0.334~5! 0.0543~2! 0.568~14! 0.758~26! 0.217~6!

0.90 1372 0.104~2! 0.332~5! 0.0543~2! 0.566~9! 0.756~17! 0.219~4!

0.91 500 0.094~2! 0.349~6! 0.0519~3! 0.544~9! 0.780~14! 0.183~6!

0.92 500 0.085~1! 0.374~6! 0.0495~2! 0.522~7! 0.797~18! 0.152~5!

0.93 500 0.077~2! 0.388~4! 0.0469~2! 0.494~7! 0.819~15! 0.115~5!

0.94 500 0.0725~8! 0.405~5! 0.0452~2! 0.476~9! 0.833~16! 0.084~6!

0.94 864 0.0729~8! 0.407~5! 0.0452~2! 0.472~8! 0.830~13! 0.081~5!

0.95 500 0.0669~5! 0.429~4! 0.0431~2! 0.447~11! 0.853~20! 0.053~7!

0.96 500 0.0620~5! 0.443~6! 0.0410~22! 0.388~30! 0.866~17! 0.021~6!

0.98 500 0.0533~4! 0.496~5! 0.0371~2!
2-10
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applied to other situations where many body effects hav
be considered. A good example is the simulation of mod
in which the polarizability is explicitly taken into accoun
@21#. Following such a route one can avoid these proble
with the evaluation of the energy using iterative procedu
@22,23#.
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