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In a recent papgiPhys. Rev. Lett86, 2038(2001)] a simple fluid with a particular density-dependent pair
potential was shown to exhibit, together with the vapor-liquid transition, a liquid-liquid phase separation and it
was evidenced that, in order to adequately define the correct boundaries of stability, a simulation procedure
based on the use of local densities had to be devised. It was found that for certain thermodynamic states the
potential drives the system toward a phase separation that is otherwise frustrated by the change in the inter-
actions induced by density fluctuations. Therefore, when integral equations or global density simulations are
used, the critical points estimated from the thermodynamics are not associated with divergent correlations and
vice versa. Here, we will explore in depth this fluid and introduce a detailed account of the proposed local
density simulation technique. The results presented bear general significance for density-dependent potentials,
like those of liquid metals or charge-stabilized colloids.
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[. INTRODUCTION outside the metastable liquid-solid region. This potential
model has the following form:

Density-dependentor more generally state dependent
potentials play a key role in the theoretical modeling of com-
plex fluids that would otherwise pose insurmountable diffi- Vo(r;p)= o\ ")
culties given the typically large number of degrees of free- _'5(?) (r=0),
dom involved [1]. Widely used treatments like the
McMillan-Mayer theory of electrolytes where the effects of wheree defines the amplitude of the potentiak., the tem-
the solvent are integrated out and condensed into a state dgerature scale o is the hard sphere diameteris the inter-
pendent dielectric constant fall into this class of simplifica-particle distance, ang is the density. The potential index

tions, although perhaps one of the most representative casggp) which determines the range of the interaction is given
corresponds to the effective ion-ion interaction in liquid met-py
als [2] treated in the nearly free electron model. Here, the

o (r<o)

()

effects of the valence electron cloud appear in the effective n(0)—3
ion-ion interaction mostly through the Fermi’s wave number n(p)=3+——> 1 : 2
ke (a function of the electron density in tyrm’And moving 1- - ap+ = a?p?

3 6

from the atomic to the supramolecular level, we again en-
counter an example where state dependent potentials are of

essential importance, namely, colloidal systems in which, ac- As shown in Ref[8] a wide variety of phase diagrams
cording to the theory of Derjaguin-Landau-Verwey- can be obtained by tuning the parameterandn(0) in Eq.

) . . . (2).
Overbeel 3,4], large charged colloidal particles immersed |n( )In a recent papdid], we have presented an integral equa-
electrolyte solutions experiment an effective screened COLﬁon perturbation the(,)ry and Monte CaieC) simulation
lomb interaction. Here, the density of counteridgasd hence study for a slightly modiléied potential(r: p). For practical
the density of colloidal particles via the electroneutrality P

condition enters the effective interaction through the screenP urposesy/o(r’; p) was truncated and shifted, which does not

ing constant and the effective valence. Density—dependerﬂual'tat'vely alter the features of the phase diagrams pre-

pair potentials have also been used to include implicitly thesented herein. The explicit form of the potential reads

effects of three and higher-body interactions of real systems © (r<a)

[5,6]. Clearly, the study of phase transitions in these systems

is of primary importance. In this respect, recently it has been V(r;p)=9 Vo(rip)=Vo(rc:p) (o=rsrg) (3
guestioned whether simple one-component fluids can exhibit 0 (r>ry),

a liquid-liquid transition. A number of systems like water, Si,

SiO,, etc. (mostly tetrahedrally coordinated substances wherer is the cut-off distance andy(r;p) is given by Eq.
seem to exhibit a liquid-liquid critical point in the super- (1). This truncated and shifted potential also exhibits liquid-
cooled region7]. For a simple fluid model with a tunable liquid separation for certain combinations af and n(0).
density-dependent potential, Tejero and Belshave shown  This liquid-liquid separation stems basically from the density
that it is possible to generate a phase diagram within the vadependence of the potential, and in this respect, it is closely
der Waals theory in which the liquid-liquid separation is well connected to the phase separation found by Dijkstra and van
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Roij [10] for a purely repulsive density-dependent Yukawa Note that althougliF (8,V,N|n(pg))=Fo(8,V,N|ny), the
potential. There is, however, a substantial difference betweefiee-energy derivatives for this thermodynamic state do not,
these two systems. The purely repulsive system will exhibit an general, coincide. Indeed, the implicit dependenceNon
transition stemming solely from the density dependence o&ndV through the potential inder(p) leads to

the potential, for instance an isotherm computed in a canoni-

cal simulation might exhibit a van der Waals loop with little __[9F [ 9F an(p) 5
or none particle number dependence, contrary to the standard — v an(p) oV )
behavior in a phase separation process led by attractive AN.0(p) VN N
forces. In contrast, the system studied in RE&9], due to  and

the presence of attractions, might exhibit a tendency to phase

separation which under certain circumstances is frustrated by JF JF an(p)

the change of the interactions induced by the density fluctua- = (a_N v n(p)+ ( an(p) v N( N |, @)

tions. This explains the large differences between the integral

equation and the thermodynamic perturbation predictions. I, the thermodynamic limit, the pressuresdndp,) and the
was thus made clear in RdB] that the treatment of poten- chemical potentials & and u,) are functions of3 and p,
tials which exhibit a density dependence poses considerablg, Eqgs.(6) and (7) reduce to

methodological and conceptual problefase Ref[11]), and
that a coherent simulation approach must account for the fags(, p|n(p))=po( 8.p|no) +1(B.pIN(p))p?n"(p)  (p=po)
that the interactions change as a result of inhomogeneities in
the sample. In this work, we intend to present an in-depth 8
study of the potential model proposed in Rgd], both ana- and
lyzing the difficulties encountered by the standard integral
equation approaches and with special emphasis on the simg(B.p[n(p))
lation procedure based on the use of local densities. _ / _

The rest of the paper is organized along the following = to(B.pIno) +1(B.pIn(p))pn’ (p) - (p=po), ©

lines. The following section is devoted to a brief presentationyhere n’(p) denotes the derivative of the potential index

of the thermodynamics of density-dependent potentials. Ifyiip respect to the density an@g, p|n(p)) is the thermody-
Sec. lll, we have collected the essentials of the thermodypamic limit of

namic perturbation treatment and the integral equation ap-

proach. In Sec. IV, we present some general remarks on a 1/ OF
standard global density-dependent MC simulation. A full ac- 1(8,V,N[n(p))= N\ an(p) :
count of the simulation approach here proposed is presented PIl gy

in Sec. V. Finally, in Sec. VI the most significant results are

Let us assume that we perform a simulation in the canoni-
collected and commented upon.

cal NVT ensemble and that at the thermodynamic state

(B,po), we have
IIl. THERMODYNAMICS AND PHASE SEPARATION IN

SIMULATIONS WITH DENSITY-DEPENDENT (ap(g,pm(p))) 0 (apo(ﬁ,pmo))

POTENTIALS >0,
ap

_ ap _
Let us first consider a system described by the potential e e
model, Egs.(1) and (2), with a fixed potential index,  In such a case, the first condition implies that this thermody-
=n(po). If the corresponding Helmholtz free energy is de-namic state is within a van der Waals loop in i plane
noted by Fo=Fy(B,V,N|ng), where 8=1/kgT, with kg  but, due to the second condition, at this state there will be no
Boltzmann’s constant andl the absolute temperaturl, is  signature of segregation. For instance, the loop will show

the number of particlesy is the volume, and the implicit little dependence on the number of particles, the size depen-

dependence ong has also been expressed, we have dence of the fluid-fluid equilibrium binodal close to the criti-
cal point will be negligible, and the critical exponents will
d(BFo)=UedB—BpodV+ BuodN, (4 not be affected by long range fluctuations. In this situation,

. . one can perform the simulation without major problems also
whereUy is the internal energyp, stands for the pressure, i, he NpT or grand canonical ensemblEx2].

and uo is the chemical potential. _ _ . On the other hand, it is possible to find that at the ther-
Focusing now on a system described by the pOte“t'allnodynamic state 4, po)

model, Egs(1) and(2) in which the potential index(p) is

a function of the density, the differential form of the corre- ap(B,p|n(p)) apo(B,p|No)
sponding Helmholtz free enerdy=F(3,V,N|n(p)) is (T) 0, (T) <0,
P=Po P=Po
d(BF)=UdB—BpdV+BudN, ©)

i.e., the system should be homogeneous according to the
whereU, p, and u denote the internal energy, the pressurethermodynamic stability criteria, but in practice the simu-
and the chemical potential, respectively. lated system is not. If such is the case, a system simulated on
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a NVT ensemble will show some tendency to separate int@ne described for the canonical case. The phase separation

different phases, which reflects in the strong system size desan occur in such a way that both boxes contain the two

pendence of the, values. phases and similar global densities, instead of having one
The source of this contradiction lies in a flaw of the stan-phase in each box.

dard simulation procedure when dealing with density-

dependent potentials. In order to determine the interactions, ;| ESSENTIALS OF THE INTEGRAL EQUATION AND

in practice, one uses a potential indegp) that is deter- THERMODYNAMIC PERTURBATION APPROACHES
mined by the average value of the densityhereafter, re- _ ) )
ferred to as the “global” densityin the whole system, irre- In this section, we present a brief account of two common

spective of the presence of inhomogeneities. Thus, if théheoretical approaches to describe the thermodynamics of a
system separates into two phasedpparticles in a volume ~fluid with the potential mode(3), namely, Ornstein-Zernike-
V, and N, particles in a volumeV,, with p;=N,/V, and  tYP€ mtegral equations and high temperature thermodynamic
pu=N, 1V, , the standard approach implies that the interacP€rturbation theoryTPT). _ o
tions in each phase are identical and controlled by a potential Different integral equation theories of the radial distribu-
indexn(p). However, if each phase is considered as a sepdion function g(r;p) are defined in terms of the so-called
rate subsystem we will have two different potential indicesPridge functionb(r;p), which involves high order particle
n,=n(p,) andn,=n(p,) and hence, if we divide the system correlations so that an approximation fgr;p) can be ob-
into two parts it is straightforward to conclude that the Helm-tained. We will focus our attention on two approximation
holtz free energy will no longer properly behave as an extenschemes, the hypernetted chaiiNC) and the reference
sive variable. Indeed, the free ener§y+(8,V.N[n(p)) HNC (RHNC)._As it is well known, these approximation
that controls the evolution of the global system is schemes consist of the Ornstein-Zernike relation

Frvr(B.N.VIn(p))=Fo(B.Ni.ViIn(p)) h(r;p>:c<r;p>+pfc(lr—r'|;p>h<r’;p>dr. (12)

+Fo(B,Ny ,Vin(p)), (10
_ . ~whereh(r;p)=g(r;p) — 1, withc(r;p) being the direct cor-
whereas the proper free energy associated with the physicglation function, together with a closure of the form
situation under scrutiny should be
g(r;p)=exg —BV(r;p)+h(r;p)—c(r;p)+b(r;p)],
F(B,N,V[n(p))=Fo(B,N;,V||n)+Fo(B,N ,V,,|n,,).(11) (13

whereV(r;p) is the interparticle potential. The bridge func-

In NpT simulations of one-component systems with densitytion b(r;p) can simply be neglected, leading to the HNC
independent pair potentials, the simultaneous presence efosure, or approximated by the bridge function of a hard
two phases in the simulation box is hindered by the surfacgphere(HS) fluid yielding the RHNC closure. In the spirit of
tension. For a large system with density-dependent interag-ado, Foiles, and Ashcroft optimized approddH], we have
tions, we can find phase coexistence at the transition pressuggso set the hard sphere diameter so as to minimize the free
if the free-energy penalty due to the presence of interfaces ignergy. It is well known that the HNC thermodynamics is
compensated. It will then be possible again to encounter sittifully self-consistent, aside from the isothermal compressibil-
ations where the Gibbs free energy is no longer an extensivigy calculated from the fluctuation theorem, which cannot be
property. This would be the case when the density dependerived from the HNC functiondl15]. Hence, the pressure
dence of the potential inder(p) leads to less attractive calculated via the virial equation is consistent with that ob-
interactions as density increases. If the system separates téined from the density derivative of the free energy and with
two phases inside the simulation box, the phase with highethe one derived from the energy route. These consistency
density will have a lower Gibbs free energy than a correproperties hold approximately in the RHNC, but additionally,
sponding homogeneous high density phase, if the interagn the case of density-independent potentials the discrepan-
tions are evaluated using the global average density. Thisies between the virial and the compressibility equations are
reduction of Gibbs free energy can compensate the increasginimized. For density-dependent potentials, however, the
of free energy of the low densitjwhere the pair potential |atter consistency property is ruled out. This is due to the fact
will be less attractive than the one corresponding to a homothat the usual form of the compressibility equation,
geneous phase of the same densityd the interfacial free
energy due to the presence of two phases at equilibrium.

Similar problems will appear in the grand canonical en- 1+Pf h(r;p) dr=pkgT«r, (14)
semble, where in principle only one phase is expected to
appear in the simulation box in the thermodynamic limit.where «+ is the isothermal compressibility coefficient, no
This is because the excess of free energy due to the form$snger holdg16,17. As a consequence, the thermodynamic
tion of interfaces can be overcompensated by the use on @itical points are not associated with diverging correlations,
potential indexn(p) equal in both phases. and, therefore, a no solution curve of an integral equation is

Use of the Gibbs ensembf&3] is also not free of prob- not necessarily the signature of a phase transition any more,
lems. For large systems, we can find a situation similar to thand vice versa. Thus, for the potential mot®| the pressure
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2

The excess free energy per particle can be written as

11
ol fox= oo+ NJO(HQ)Ad)\, (16)

where(Hy), is the canonical ensemble average of the total
perturbation energy, anﬂ:XS is the excess free energy per
particle of the HS fluid.

Using a high temperature expansion truncated at first or-
der[18], it can be shown that,, can be approximated by

ﬁfex

05 |

1
o 1554 50 [ GustipVATpanL (1D

\ 1 wheregys(r;p) is the radial distribution function of the HS
po reference system.
Comparing the first-order TPT results with the RHNC es-

density, as obtained from the HN@Golid line) and RHNC (solid tlrrllates(sr(:e -IT-?Dt?II_e ) v(\;e (_:onclude thalfc we (ltandconfl_(gentlﬁl
line with circleg functionals, and from thermodynamic integration rely on the predictions to qualitatively describe the

of the virial pressure for the HN@otted ling and RHNC(dashed phase behgvior of the potential mpc_{éb. _The TPT is not
line) for a=120vy5, N(0)=3.5, r,=5.1c, andt=kgT/e=3. plagued with the convergence difficulties present in the

RHNC, which to make matters worse in the present instance

exhibits a well defined van der Waals loop, a feature that i€ not correlated with the phase transition. _
typically absent for HNC-like approximations for state inde-  Finally, in order to obtain the coexistence curves, one sim-
pendent potentials, i.e., in these cases, b@#NC and ply has to solve the two-phase coexistence conditions
RHNC) equations break down before the pressure or the -~
chemical potential can develop a van der Waals loop. More- P(p, T)=p(pu.T) (18
over, we observe in Fig. 1, the high degree of consistencynq
between the free-energy functiofdl5] and the free energy
obtained from thermodynamic integration of the virial pres- wip, T =ulp,,T), (19
sure. On the other hand, when comparing with MC results,
the RHNC as expected is somewhat superior to the HNGvhere the pressurp and the chemical potentigt can be
approximation. Consequently, in what follows, we will just derived from the free energy per particfe- kg T[In(pA3)
concentrate on the RHNC results. —1]+f., with A the thermal de Broglie wavelength, using
Satisfactory estimates of the thermodynamic quantitieshe thermodynamic relations
can also be obtained in the context of TPT. As usual, we split

FIG. 1. Reduced excess free energf., versus the reduced

the pair potential as p=p?dflap, wm=a(pf)lap. (20)
V(rip[N) = VIS0 +AVA(r p), (19 IV, THE SIMULATION PROCEDURE USING GLOBAL
DENSITIES

using the HS fluid as the reference system and the attractive

(density-dependehpotential as the perturbation. The param-  As pointed out, we first consider global densities on the
eterA (0=\=1) stands for the coupling term which gradu- MC simulations for the potential mod€3). In systems with
ally “switches on” the perturbation. a small number of particles and large density, it may happen

TABLE |I. Reduced excess free energy per partigf¢*, internal energy per particlu, and pressure
p* =pBpa° from first-order TPT and RHNC for reduced temperattirekg T/e=3.0 at different reduced
densitiesp* = po®.

p* BTt BfRhnc Butpt BUrHNC (P*)rpr (P*)rHNC
0.1 0.032 0.026 —0.192 —0.204 0.108 0.108
0.2 0.160 0.153 —-0.321 —-0.337 0.269 0.270
0.3 0.348 0.340 —0.433 —0.448 0.462 0.463
0.4 0.484 0.476 —0.647 —0.661 0.535 0.529
0.5 0.528 0.519 —-1.02 —-1.03 0.552 0.527
0.6 0.565 0.553 —1.48 —1.49 0.847 0.789
0.7 0.692 0.675 -1.97 —1.98 1.66 1.56

0.8 0.975 0.948 —2.45 —2.45 3.23 3.08

021202-4



LOCAL DENSITY APPROACH FOR MODELING FLUIGS . .. PHYSICAL REVIEW E 67, 021202 (2003

that L<2r., whereL is the length of the side of the simu- TABLE II. Local densities from simulation and theory. See the
lation box. In these cases we have explicitly calculated thd®t for details.
pair interactions for <L/2, and a mean-field correcti¢t9]

has been added to the energy to take into account the intel- A mpo°/6 (L /P)sim (pL/p)cs
actions in the ranggL/2r.]. The chemical potential can be 4 3.0 0.475 1.050 1.053
evaluated using the insertion methid®]. 6 3.0 0.475 1.047 1.044
4 3.5 0.475 1.035 1.034
Bu=In(pA®)—In(e PV yr, ) 4 4.0 0.475 1.024 1.023
6 4.0 0.475 1.019 1.019
whereAU accounts for the change of energy of the systemny 30 0.300 1.039 1.037
when introducing a test particle at a random position in the, 35 0.300 1.028 1.029
system. The density dependence of the potential indeX 6 4.0 0.300 1.016 1.016
has to be taken into consideration, so th&t has two con-
tributions: the change due to the new value of the potential
index for the system witiN+ 1 particles due to the increase
of the density, and the change due to the interactions of the f gus(r;p)w(r)dr f hus(r;p)w(r)dr
test particle with the remaininly particles in the system. pL= =+
. : L=p ptp ;
For a fixed temperature, we can write f w(r)dr f w(r)dr
Bu(p)=Bu’+Inz, (22 (26)

where_z is the fggaci_ty of the fluid anqk® is a reference wherehys(r:p)=gus(r;p) —1 is the total correlation func-
chemical potentialwhich only depends on the temperature tion of the HS fluid,w(r) is a weight function of the form
The usual choice fogu® is

rlo—1
A1

Bul=In(A%/c3). (23) w(r):{l—

q]2
} (osr<\o), (27

The knowledge ofz for different values ofp defines the
equation of state of the system. Expandingas a series in and zero otherwise, arglis a positive integer, and>1. For
the density certain values ofy and\, w(r)=1 for short distances, and
decays rapidly to zero at=o\. gyg(r;p) deviates signifi-
cantly from unity precisely within this short range. There-
|nZ=|n(P03)+k21 a(pa®)X, (24 fore, assuming that most of the contributions to the integral
- stem from the short range regidwhere w=1), we can

where the coefficienta, are estimated by fitting the simula- make the following approximation:

tion data. Using elementary thermodynamics one can express

the coefficients of the virial expansion of the pressure in Jh . dr= Jh vdr = pkaT kHS— 1

terms ofak, Ieading to P HS(rap)W(r) r=p HS(r!p) I'=pKg KT (, )
28

k
3_ 3 3yk+1
Bpo==po +k21 1 po ) (25) wherex’'® is the isothermal compressibility coefficient of the
HS fluid. Therefore, the local density can be estimated as

The determination of the phase equilibriya8) and(19) is
straightforward using Eq$24) and (25). pksTrHS—1
pL=pt——. (29

V. THE SIMULATION PROCEDURE WITH LOCAL f w(r)dr
DENSITY CONSIDERATIONS

It was shown in Sec. Il that in certain cases the use of d he accuracy of Eq29) can be assessed evaluating the local
global density in the definition of the pair potential leads todensityp, by computer simulation for a HS fluid and com-
thermodynamic inconsistencies. In this section we will showParing the results with those estimated using @§) and the

how to circumvent this problem introducing a local density Carmnahan-Starlin€S) equation of statd18]. The param-
approach. etersq and \ in Eqg. (27) are tuned, so that the value of

(pL/p)sim @nd (o, /p)cs are reasonably close. This led us to
chooseq=6 and\ =4 (see Table I\.
In computer simulation the local density around a particle
Consider a HS fluid with global densipy. A local density i for a given configuration of the system can be evaluated
pL can be defined by from

A. Definition of the local density

021202-5



N. G. ALMARZA, E. LOMBA, G. RUIZ, AND C. F. TEJERO PHYSICAL REVIEW B7, 021202 (2003

pair interactions, similar to those present in the global den-
gi w(rij) sity simulations but taking into account the particular values
pL i:J—, (30) of the potential indices; for the pair of particles involved
f w(r)dr 1
Uinterzz E ;I V(rijin)  (rij=o0). (33

wherer ; is the distance between particiesndj. Our goal is :

to design a simulation procedure for pair potentials that de- i o i

pend explicitly on the local densities. For homogeneous sys! h€ “intramolecular” contributionU;y, is chosen to be
tems the method must render results essentially equivalent to K N

those obtained for potentials which depend on the global .

density. The local densities evaluated through &§) are BUinwra(M) = 2 ;1 [ni=n(pp)]?. (34)
expected to be larger than the global density of a correspond-

ing homogeneous systefdue to the structure of(r;p) at  |n this contribution, we include the many body interactions
short distances Therefore, we should either increase theunderlying the local density approach through the depen-
value of\ to reduce such differences or to construct a deViCQjence Ofpi on the positions of the other partic|e3_ The value
that relates a local density around a given partiple, with  of K must be large enough to avoid large fluctuationsof

an equivalentglobal densityp; . The second alternative has aroundn(p;), while keeping an adequate acceptance rate in
been chosen because of its lower computational cost. Afhe MC simulation.

accurate prescription fop; given the value ofp, ; can be
formulated using the scheme developed above. The differ-
ences betweep, andp for homogeneous systems are more
significant at high densities. Moreover, the density depen- Two kind of trial moves are performed in the simulation
dence ofp, must be monotonic in order to evalugieas a  Procedure: translations of a partidl@nd changes of its in-
function of p, ;. Such a condition is fulfilled using the CS ternal coordinate. The first type of move is performed by
equation of state. The determinationgfin terms ofp, ; can  Standard procedurdd9]. In order to apply the acceptance
be carried out by an iterative procedure. Tkib iteration ~ Criteria, first the possibility of hard sphere overlaps is

C. Simulation algorithm

estimate reads checked by a link-list procedufd 9]. If the trial configura-
tion is not forbidden by hard core overlaps, the change in the
. pt—h potential energy has to be evaluated. The calculation of
pM=py; = (3D AUjper must incorporate two contributions with different
pLpi ) potential indices for each pair interaction. The change in

Uintra 1S due to the variation of the local densities of the

displaced particle and of the remaining particles in the sys-

tem. The change in local densities is straightforward since

the distancesr;; are explicitty computed to calculate
Since the local density varies from particle to particle, twoA U, ;. FOrj#i,

particlesi andj have, in general, different potential indices

As initial solution one can usg(®=p, ;.

B. The potential energy in the local density model

associated with their respective local densities. The pair in- new_ [w(r®™) —w(rij)] 35
teraction can then be defined as the average of the energies PLi = PL :
calculated with both potential indices\(p;) and n(p;). f w(r)dr

Nonetheless, such a computational scheme is clearly imprac-

tical. If a particlei changes its position in a trial move, the Once one has determined the new values of the local densi-
particles around it will undergo a change in their potentialties it is possible to calculate the corresponding equivalent
index and many pair interactions should be recalculated tgobal densityp]®" to finally computeA (BU;nya). The ac-
evaluate the acceptance criteria. In order to develop a morgeptance criterion used for these moves is the standard one
efficient alternative each potential index has been treated gue to Metropolig19].

as an “internal” coordinate of the particlie These coordi- In the second type of MC stegsampling one internal
nates are relatively free to change from their “central val-coordinaten;) local densities do not change. The probability

ues” n(p;). The condition of similarity between local and of 5 potential indexn; (keeping constant the remaining co-
global density resultscorrespondence principldor homo-  grdinates of the systenis

geneous systems implies that the differentesn(p;) must

remain small. This can be enforced introducing a new energy P(n)cexd — BW(n)], (36)
term in the Hamiltonian. The potential energycan then be
written as where
U=UpstUintert Uintras (32 K B
. _ W(n)=—=[n—n(p)?+= 2 V(rii;n) (rij=o0).
where U5 corresponds to the hard sphere interactions and AW =S In=n(p) ]+ 5 = (i) (ry=o)
the intermolecular contributiold; ., stands for the sum of (37)
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A function W, is defined from the Taylor expansion of n
W(n;) aroundn(p;) truncated to second order an. The e Pr= 3 (e PAYY, (42)
result can be expressed as pA°A,
Ko where An=n,,,— Nmin @and A,, takes into account the ki-
BWy(n;)=ag+ T(ni—nmm)z, (38)  netic energy contribution of the internal coordinates to the
partition function. LetX, be the fraction of successful inser-
wheren,;, is the value of the index that minimize3W\,. tions, then
Within the above cond|t|0n$le_1rge value ofK)r,]exvg have (e By =X X, (43)
Ko=K andng;,=n(p;). The trial value ofn;, n""*"is cho-
sen with probabilityP, where X is the average of eXp- BAU] over the successful
e e insertions. LetNg be the total number of successful inser-
Po(n"®") ccexd — BWo(n"M 1. (39 tions, thenXs can be computed from
Detailed balance is fulfilled19] when the acceptance prob- 1N
ability A of a change fromn;=n°"“ to n;=n"®"is given by Xs=NAn 2 f dnexd —BAU(r,n)], (44
S = Mmin

P(n"*") Po(n°'?)
P(n°') Po(n"")

(40) wherer, denotes the position of the test particle in the suc-
cessful insertion triak. An uniform sampling om is ex-
pected to be inefficient. To cope with this, we replacsith

For K=10% nearly 100% of the moves were accepted. @ new variabler,

A(n"e%neld) = ma{ 1

, (49

N : . K
D. Estimation of the chemical potential a=er{ 7“(n_ n,)
In order to evaluate the chemical potential, a range of

acceptable values of the potential index has been definegyhere erf is the error function, and the paramekersandn,,
namely, will be specified later. The change of variable leads to

VI Ve f H— BAU o(r,m1d
= — exd — s(f,m ]da,
In principle, we can estimate the chemical potential by a = NsAn &1 V2K, o stk

method similar to the one used for global density simula- (46)
tions. Now one should also pick a value for the potential

index of the test particle. A uniform sampling over its defi- Where

nition range is likely to give poor statistics on the estimation

of w. This can _be bypagseo_i using proced_ures similar to those ,BAUins(r,n)=,8AU(r,n)—&(n—na)z. (47)

we have used in sampling internal coordinates. However, we 2

found that such a strategy alone does not lead to a reaIIK‘ o . . ) o

efficient method. In the determination of the chemical poten!NOW it is possible to obtain an uniformly distributed sam-
tial of systems with a hard core we can consider two sourceBling on the new variabler. For appropriate values d&f,

of uncertainty. First, it is required to have a sufficient numbeti-€., K,=K andn,=n(p)], we will have api,~—1 and

of successful insertiong.e., without hard core overlapand ~ @1=1. Therefore,

second the fluctuation of the quantity to be averaged over LN 5

successful insertions must not be very large. Special proce- B [2m

dures are availableL9] to cope with the first problem. In our X~ NaAn kz’l K—a(exp{—ﬁAUms(rk Mo

case, given the low computational cost of checking hard (48)
sphere overlaps and that the densities of the systems are not

too high in most of the cases, a direct insertion method is When performing the insertion test usifig} as internal
adequate. In order to solve the second problem, we analyzambordinates, the intramolecular energy of teparticles of
the sources of large fluctuations in the insertion enextyy  the system does not change. In order to evald€ir,n)

in successful insertions. Aside from the intramolecular enfor a successful insertion, we have to compute: the
ergy of the test particle, the main source of fluctuation washanges of the intermolecular interactions betweerNtpar-
found to be the changes on intramolecular energies of paticles of the systemA\U;n, n (since the values ofy; will
ticles whose local densities are affected by the insertion. Tehange for each particle whoge is affected by the inser-
avoid these effects, we employ a procedure in which, in theion), (ii) the intramolecular energy of the inserted particle,
trial insertion, we keep constant the differencés=n; and (iii ) the intermolecular interactions between the inserted
—n(p;). This scheme implies a simple change on the choicegarticle and the particles of the system. The actual changes in
of internal coordinates. The chemical potentialcan be n(p;) are small from the point of view of the intermolecular
evaluated as interactions and a full recalculation of all the pair interac-

Ne[Nmin,Nmaxl, Nmin>3. (41)
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tions is not required. For a given successful insertion, the 3 - T T T - T - T T
change in the potential indesn; is given by

N =n(pj tes9 — N(pPi), (49 25

where p; (st COrresponds to the equivalent bulk density of
particlei in the system witiN+1 particles. The change of
the intermolecular interactions between thigarticles con-
trolled by the potential inder;, Su; will be to a very good 15
approximation

kgT/e

n 1

Su;=u/ on;+ ?i(m)z, (50)
05
with 1
1 Lo .
Ui=7 2 V(rij,n)  (rij=o0), (52 FIG. 2. Phase equilibrium in the density-temperature plane for
171 the same parameters as in Fig. 1. The solid circles correspond to
N , RHNC calculations and the solid lines are the results of first-order
U; TPT. The no solution region of the RHNC equation is delimited by
AUintern= izl ui on; +?(5ni)2 ’ (52 4 dot-dashed line.

whereu; andu;’ are the first and second derivativewfwith  harameter spacér,n(0)) in our quest for the liquid-liquid
respect ton; in the N-particle system. The derivatives are gquilibrium. The good performance of the TPT is not surpris-
computed for each particle before performing a number of,q since the values of the potential indefp) for the cases

insertion attempts. _ _ considered correspond to a relatively slow decay of the at-
The evaluation ofAUjnan+1 IS Straightforward after  tractions between particles. In Figs. 3 and 4 the TPT phase
evaluating the local density around the test particle. diagram is shown for different values ef andn(0).

The algorithm to perform the insertion test can be Finally, for «=5.7v,4s, N(0)=3.2, andr.=5.10 (other
sketched according to the following stes: Evaluate the parameter combinations giving analogous qualitative re-
local density around the test particle and determine theytg, it is seen in Fig. 5 that at low temperatures, the iso-
equivalent bulk densityy. ;. (i) Compute the changes of therms develop two van der Waals loops. The corresponding
the local densities of thil particles of the system due to the phase diagram, shown in Fig. 6, therefore, exhibits a vapor-
insertion of the test particle and the valygges:. (iil) Com- jiquid transition and a liquid-liquid transition. Comparing
pute the changes in the intermolecular energy terms ascribgflese TPT estimates with the RHNC predictions, we find that
to the particles of the system\Ujner,n, @nd the interactions  eyen though the RHNC liquid-liquid equilibrium agrees with
of these particles with the test particle in terms of the newrpT 5 pseudospinodal line with a single maximum covers
potential indicesn; of the N-particle system(iv) Evaluate  the |ow-density region and prevents the determination of the

the intermolecular interaction of the test parti¢end first  yapor-liquid equilibrium. This situation is quite opposite to
and second derivatives with respect g 4) at Nyyq

=n(pn+1)- (v) DetermineK, andn, as in internal moves
and use them to pick a value ofy,;. (vi) Compute the
intramolecular energy of the test particle and the intermo-
lecular interactions that depend aR ., ; to finally calculate 25 |-
BAU,,s. According to this scheme and the condition of
equivalence to systems with global density interactions in the
homogeneous limit, the configurational part of the chemical

potential can be computed as Em
15 .
3g=Br—n9) K
poce PHTHRI= K_exq_ﬁAUins] . (53
a @ 1 —
VI. RESULTS AND DISCUSSION o5 o
Figure 2 shows the theoretical predictions for the phase 0 02 04 oo’ 06 08 1
diagram obtained for the full potentifiEgs. (1 and 2] for
a=12.Qvys (Wherevys=mo°/6) andn(0)=3.5. The re- FIG. 3. Phase equilibrium in the density-temperature plane for

sults obtained from TPT are in agreement with the RHNCn(0)=3.2, r.=5.1¢, and a=13v,g (solid line), 10v,g (solid
predictions. Thus, we have relied on the TPT to search in théne with squares and 8vyg (solid line with trianglek
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3

25

kgT/e

1.5

pc’

FIG. 4. Phase equilibrium in the density-temperature plane for F|G, 6. Phase equilibrium from first-order TR3olid line9 and
a=12vyg, r.=5.10, andn(0)=3.4 (solid line), 3.2 (solid line RHNC (solid circles for a=5.7vys, n(0)=3.2, andr,=5.10.

with squarey and 3.0(solid line with triangles The no solution region of the RHNC equation is delimited by a
dotted line.

what was found in Fig. 2, where the divergence of correla-

tions occurs well outside the binoda@n extreme case would poi+p,od bt b 1 b

be that of Ref[10], where there is no divergence of corre- 2 = Dot tf+ nM, (54)

lations.

In order to get a rough estimate of the metastability limits
(i.e., the binodal line for a global density simulation proce-
dure for fluids simulated in theNVT ensemble, we have poi—p,o’=
performed a series of simulations for different temperatures
and densities with fixed potential indices amg=5.10-.

g’
, (59

1
ot ay +ann

From the chemical potentials calculated using simulation%vr?grtﬁg : \?;SOF; Upiraest:: gﬁgstlﬂgsei:)g?;gﬁt?;ngseﬂ g:ﬁ]g%lf'd
with N=256 the liquid-vapor equilibriuniLVE) can be de- o 4o o adjustable parameter. A weighted least squares fit
termined. The values of the inverse reduced temperattire 1& the data yields:by=0.420 764, b,=0.329877, b=
=¢€/(kgT) and the potential index considered lie in the_0_104065, ,8’=0.38(112, a0=0.87’24{37, at=1.72,8€?06,
ranges[0.7,1.90 and[3.2,3.4, respectively. The results of anda,=—0.618 653.

the LVE for fluids with density-independent interactions can ¢ metastability limits for a fluid with the density-

be fitted to the following equations: dependent pair potentigB) for «=5.7v 5, n(0)=3.2, and
r.=5.10, were obtained as a function of the density by
searching for the value df, where eithep=p,(T,n(p)) or
p=p(T,n(p)). The results are shown in Fig.(@otted ling.
It is remarkable the agreement between the binodal lines es-
timated using global density MC results and the pseudospin-
odal lines arising from RHNC calculations. Comparing Figs.
6 and 7 it seems that the fluid’s stability below the no solu-
tion line of the RHNC and above the vapor-liquid critical
point stems from the density dependence of the interactions.
Simulations using the local density procedure were carried
out in theNVT ensemble for the same set of parameters. The
number of particles were chosen to¥e 500 in most of the
cases. Some simulations were run usiNg-864 andN
=1372 in order to analyze the size effects.
15 . , . . . , . ! . For a given temperature, we usually performed 24 runs at
0 0.2 0.4 . 06 08 4 packing fractions »=pwo>/6 given by 7=0.02 (i
po =1,2,...,24).Initial configurations were taken either from
FIG. 5. Isotherms in the density-pressurg* & Bpo?) plane @ lattice structure or from the last configuration of a run at
obtained from first-order TPT foax=5.7vs, N(0)=3.2, andr, higher density. Simulations were organized in cycles, each
=5.1¢ and reduced temperaturéfom bottom to top t=0.9  cycle implying N translational attempts and\ internal
—1.2 by steps of 0.05. It is seen that at low temperatures the isomoves. For each case, we rarx a0* cycles and averages
therms exhibit two van der Waals loops. were taken over the second half of the runs. After completing
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15 T T T T T T T T T TABLE IV. Simulation results for the reduced coexisting densi-
ties, pressure and fugacityof the vapor ¢)—high density liquid
(hl) equilibrium for the same parameters and inverse reduced tem-

L 7 peratures as defined in Table IlI.

/ -1 * * *
o \, i t N Py Phi Po-ni Inz

- 0.94 500 0.09¢) 0.82319) 0.04895) -3.34§811
0.94 864 0.088) 0.82216) 0.04864) -3.3515)
0.95 500 0.07(®) 0.85122) 0.04395) -3.4197)
0.96 500 0.05@) 0.86817) 0.03947) -3.49517)
. 0.97 500 0.049®) 0.86813) 0.03584) -3.5688)
. 0.98 500 0.044®) 0.87312) 0.033@4) -3.6329)

agreement between theory and simulation, specially in the

FIG. 7. Phase equilibria obtained from the local density simula-liquid-liquid equilibrium is due to the relatively slow decay
tion technique(solid circleg for a=5.7v,s, n(0)=3.2, andr,  Of the pair potential.

=5.10, compared with first-order TPTs0lid curves. The region In the simulation method proposed here, we have in-
where we ought to use the local density criteria in the simulationcluded a new length scale in the system, basically controlled
technique is also indicate@otted ling. by the parametex. In order to get a precise analysis of the

fluid phase equilibria, especially close to the critical points,

each cycle, we performed typically 3thsertion attempts to  without significant effects on the particular choice of the lo-
evaluate the chemical potential. At a given temperature, theal density parameters, it would be required thag\ o
chemical potential estimates were fitted as a function of the<L. In situations where the fluid-fluid equilibrium is pro-
density using Eq(24). From the coefficients, the pressure duced by the density dependence of the pair potential, the
and the phase equilibrium were determined. local density approach could be expected to induce a cross-

In Table Ill the coexisting densities and the pressure abver (basically controlled by the lengths) from a mean-
coexistence for the vapor-liquid and the liquid-liquid equilib- field critical behaviowhere no local density considerations
ria are gathered, whereas in Table IV the vapor-high densitare taken into accounk,— <) to an Ising-like behavior pro-
liquid equilibrium data are reported. The system size depenvided that the interactions are short randad].
dence of the results is only significafwithin error bar$ Finally, the strategy followed in the simulation of a fluid
close to the critical points. In Fig. 7 the phase diagram obwith local density dependence of the potentia., the intro-
tained from simulation results and TPT is shown. The goodduction of “fictitious” internal degrees of freedoncould be

TABLE Ill. Reduced densitiep* =po® and pressur@* = Bpo° at coexistence obtained from Monte Carlo simulation using the local
density method, fon(0)=3.2, =5.Tvys, r.=5.10, A\=4, andq=6, at different reduced inverse temperatures= e/kgT and number
of particlesN. Columns 3 to 5 correspond to the vapor-liquid coexistence, and columns 6 to 8 to the liquid-liquid coexistence. The subindices
v, II, andhl refer to the vapor, the low density liquid, and the high density liquid, respectively. In the parentheses, we report the estimation
of error bars as twice the standard deviation of the mean, in units of the last figure of the corresponding magnitude.

tt N Py pil Py Pl Phi Pl —hi
0.87 500 0.1500) 0.25916) 0.062@3)

0.88 500 0.12¢) 0.2946) 0.05912) 0.61825) 0.72927) 0.2867)
0.88 864 0.12%) 0.2829) 0.05933) 0.63841) 0.70446) 0.2906)
0.89 500 0.11(®) 0.31236) 0.05643) 0.59914) 0.75316) 0.2576)
0.89 864 0.11@) 0.3155) 0.05662) 0.59814) 0.74519 0.2555)
0.90 500 0.10®) 0.3326) 0.05412) 0.57012) 0.76419) 0.2195)
0.90 864 0.10@®) 0.3345) 0.05432) 0.56814) 0.75826) 0.2176)
0.90 1372 0.10@) 0.3325) 0.05432) 0.5669) 0.75617) 0.2194)
0.91 500 0.09@) 0.3496) 0.05193) 0.5449) 0.78014) 0.1836)
0.92 500 0.0841) 0.3746) 0.0495%2) 0.5227) 0.797118) 0.1545)
0.93 500 0.07@) 0.3884) 0.04692) 0.4947) 0.81915 0.1155)
0.94 500 0.072®) 0.40585) 0.04522) 0.4769) 0.83316) 0.0846)
0.94 864 0.072®) 0.4075) 0.04522) 0.47298) 0.83013) 0.0815)
0.95 500 0.066%) 0.4294) 0.04312) 0.44711) 0.85320) 0.0537)
0.96 500 0.0620) 0.4436) 0.041G22) 0.38830) 0.86617) 0.0216)
0.98 500 0.053@}) 0.4965) 0.03712)
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